Skip to content

material

MaterialParameters(N=None, S=None, L=None, L_dot_S=None, L_tens_S=None, lambda_S=None, lambda_L=None, m_psi=None)

Class for DM-relevant material properties, such as the number of fermions, spin, orbital angular momentum, etc.

Attributes:

Name Type Description
N dict

Fermion numbers.

S dict

Spin vectors.

L dict

Orbital angular momentum vectors.

L_dot_S dict

\(L \cdot S\)

L_tens_S dict

Spin orbit coupling tensor \(L \otimes S\)

lambda_S ArrayLike

spin-coefficient for magnons

lambda_L ArrayLike

orbital angular mom.-coefficient for magnons

m_psi dict

Dictionary of masses for different particles.

Methods:

Name Description
validate_for_phonons

Validates that the material properties are suitable for phonon calculations.

validate_for_magnons

Validates that the material properties are suitable for magnon calculations.

Parameters:

Name Type Description Default
N dict

Fermion numbers.

None
S dict

Spin vectors.

None
L dict

Orbital angular momentum vectors.

None
L_dot_S dict

\(L \cdot S\)

None
L_tens_S dict

Spin orbit coupling tensor \(L \otimes S\)

None
lambda_S ArrayLike

spin-coefficient for magnons

None
lambda_L ArrayLike

orbital angular mom.-coefficient for magnons

None
m_psi dict

Masses of the fermions. Defaults to NIST values.

None
Source code in darkmagic/material.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def __init__(
    self,
    N: dict = None,
    S: dict = None,
    L: dict = None,
    L_dot_S: dict = None,
    L_tens_S: dict = None,
    lambda_S: ArrayLike = None,
    lambda_L: ArrayLike = None,
    m_psi: dict = None,
):
    r"""
    Material properties constructor. All dicts have keys "n", "p", "e" for neutron, proton and electron. Any missing values are instantiated to 0.

    Args:
        N (dict, optional): Fermion numbers.
        S (dict, optional): Spin vectors.
        L (dict, optional): Orbital angular momentum vectors.
        L_dot_S (dict, optional): $L \cdot S$
        L_tens_S (dict, optional): Spin orbit coupling tensor $L \otimes S$
        lambda_S (ArrayLike, optional): spin-coefficient for magnons
        lambda_L (ArrayLike, optional): orbital angular mom.-coefficient for magnons
        m_psi (dict, optional): Masses of the fermions. Defaults to NIST values.
    """
    # Phonons
    self.N = N
    self.S = S
    self.L = L
    self.L_dot_S = L_dot_S
    self.L_tens_S = L_tens_S
    # Magnons
    self.lambda_S = lambda_S
    self.lambda_L = lambda_L
    # Mass of the particles
    self.m_psi = m_psi

validate_for_phonons(n_atoms)

Validates that the material properties are suitable for phonons. Namely, at least one of N, S, L, L_dot_S or L_tens_S must be defined.

Parameters:

Name Type Description Default
n_atoms int

Number of atoms in the material.

required

Raises:

Type Description
AssertionError

If any of the required material properties for phonons are missing or have incorrect dimensions.

Source code in darkmagic/material.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def validate_for_phonons(self, n_atoms: int) -> None:
    """
    Validates that the material properties are suitable for phonons.
    Namely, at least one of N, S, L, L_dot_S or L_tens_S must be defined.

    Args:
        n_atoms (int): Number of atoms in the material.

    Raises:
        AssertionError: If any of the required material properties for phonons are missing or have incorrect dimensions.

    """
    assert any([self.N, self.S, self.L, self.L_dot_S, self.L_tens_S])
    for d in [self.N, self.S, self.L, self.L_dot_S, self.L_tens_S]:
        if d:
            assert any(np.any(v) for v in d.values())

    self._validate_input(n_atoms)

validate_for_magnons(n_atoms)

Validates that the material properties are suitable for magnons. Namely, at least one of lambda_S and lambda_L must be defined.

Parameters:

Name Type Description Default
n_atoms int

Number of atoms in the material.

required

Raises:

Type Description
AssertionError

If any of the required material properties for magnons are missing or have incorrect dimensions.

Source code in darkmagic/material.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def validate_for_magnons(self, n_atoms: int) -> None:
    """
    Validates that the material properties are suitable for magnons. Namely, at least one of lambda_S and lambda_L must be defined.

    Args:
        n_atoms (int): Number of atoms in the material.

    Raises:
        AssertionError: If any of the required material properties for magnons are missing or have incorrect dimensions.

    """
    assert any([np.any(self.lambda_S), np.any(self.lambda_L)])
    # TODO: not nice to have so many return values
    self._validate_input(n_atoms)

Material(name, properties, structure, m_atoms)

Represents a generic material with its structural and atomic properties.

Attributes:

Name Type Description
name str

The name of the material.

properties MaterialProperties

The properties of the material.

real_frac_to_cart ndarray

The transformation matrix from fractional to Cartesian coordinates (units 1/eV), in real space.

real_cart_to_frac ndarray

The transformation matrix from Cartesian (units 1/eV) to fractional coordinates, in real space.

recip_frac_to_cart ndarray

The transformation matrix from fractional to Cartesian coordinates (units eV), in k-space.

recip_cart_to_frac ndarray

The transformation matrix from Cartesian (units eV) to fractional coordinates, in k-space.

m_atoms ArrayLike

an array of atomic masses, in eV.

m_cell ndarray

The total mass of the atoms in the material, in eV.

xj ndarray

The Cartesian coordinates (units 1/eV) of the atoms in the material.

structure Structure

the crystal structure pymatgen Structure object.

n_atoms int

The number of atoms in the material.

Parameters:

Name Type Description Default
name str

The name of the material.

required
properties MaterialProperties

The properties of the material.

required
structure Structure

The structure of the material.

required
m_atoms ArrayLike

atomic masses in eV.

required
Source code in darkmagic/material.py
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def __init__(
    self,
    name: str,
    properties: MaterialParameters,
    structure: Structure,
    m_atoms: ArrayLike,
):
    """
    Constructor for a generic Material object

    Args:
        name (str): The name of the material.
        properties (MaterialProperties): The properties of the material.
        structure (Structure): The structure of the material.
        m_atoms (ArrayLike): atomic masses in eV.
    """
    # Material properties
    self.name = name
    self.properties = properties

    # Define transformation matrices
    self.real_frac_to_cart = structure.lattice.matrix.T
    self.real_cart_to_frac = LA.inv(self.real_frac_to_cart)
    self.recip_frac_to_cart = structure.lattice.reciprocal_lattice.matrix.T
    self.recip_cart_to_frac = LA.inv(self.recip_frac_to_cart)

    # Atomic and structural properties
    self.m_atoms = m_atoms
    self.m_cell = np.sum(m_atoms)
    self.xj = structure.cart_coords
    self.structure = structure
    self.n_atoms = len(structure.species)

    # Internal variables
    self._max_dE = None
    self._q_cut = None

PhononMaterial(name, properties, phonopy_yaml_path)

Bases: Material

A class for materials with phonons.

Attributes:

Name Type Description
phonopy_file Phonopy

The Phonopy object for the material's phonons

n_modes int

The number of phonon modes in the material.

born ndarray

The born effective charges

epsilon ndarray

The dielectric tensor

Parameters:

Name Type Description Default
name str

The name of the material.

required
properties MaterialProperties

The properties of the material.

required
phonopy_yaml_path str

The path to the Phonopy YAML file.

required
Source code in darkmagic/material.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def __init__(
    self, name: str, properties: MaterialParameters, phonopy_yaml_path: str
):
    """
    Constructor for PhononMaterial objects.

    Args:
        name (str): The name of the material.
        properties (MaterialProperties): The properties of the material.
        phonopy_yaml_path (str): The path to the Phonopy YAML file.

    """
    # TODO: Need a check for when phonopy_yaml does not have NAC
    phonopy_file = phonopy.load(phonopy_yaml=phonopy_yaml_path, is_nac=True)
    # TODO: should be a dict that has the correct factor for all codes
    length_factor = const.bohr_to_Ang if phonopy_file.calculator == "qe" else 1.0
    self.phonopy_file = phonopy_file
    n_atoms = phonopy_file.primitive.get_number_of_atoms()
    self.n_modes = 3 * n_atoms

    properties.validate_for_phonons(n_atoms)

    m_atoms = phonopy_file.primitive.masses * const.amu_to_eV

    # NAC parameters (born effective charges and dielectric tensor)
    self.born = np.array(
        phonopy_file.nac_params.get("born", np.zeros((n_atoms, 3, 3)))
    )
    self.epsilon = np.array(
        phonopy_file.nac_params.get("dielectric", np.identity(3))
    )

    # Create a Structure object
    # At some point should make careful assessment of primitive vs unit_cell
    # PhonoDark uses primitive, but what about when it's different from unit_cell?
    positions = phonopy_file.primitive.scaled_positions
    lattice = (
        np.array(phonopy_file.primitive.cell) * const.Ang_to_inveV * length_factor
    )
    species = phonopy_file.primitive.symbols

    structure = Structure(lattice, species, positions)

    super().__init__(name, properties, structure, m_atoms)

max_dE: float property

Returns omega_ph_max = max(omega_ph) if there are optical modes, otherwise returns the average over the entire Brillouin zone. The quantities are obviously not the same but should be the same order. See theoretical framework paper, paragraph in middle of page 24 (of published version).

TODO: clarify this

Returns:

Name Type Description
float float

the maximum energy deposition

q_cut: float property

The Debye-Waller factor suppresses the rate at larger q beyond q ~ np.sqrt(m_atom * omega_ph). This method calculates an estimate for the cutoff value of q.

Returns:

Name Type Description
float float

The cutoff value of q.

get_eig(k_points, with_eigenvectors=True)

Calculates the phonon frequencies and eigenvectors for the given k-points.

Parameters:

Name Type Description Default
k_points ArrayLike

Numpy array of k-points in fractional coordinates.

required
with_eigenvectors bool

Flag indicating whether to calculate eigenvectors.

True

Returns:

Type Description
Tuple[ndarray, ndarray]

A tuple containing the phonon frequencies and eigenvectors.

  • The phonon frequencies are represented as a numpy array of shape (n_k,n_modes)

  • The eigenvectors are represented as a numpy array of shape (n_k, n_atoms, n_modes, 3)

where n_k is the number of k-points, n_modes is the number of modes, n_atoms is the number of atoms, and the last index is for the x, y, z components of the eigenvectors.

Source code in darkmagic/material.py
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
def get_eig(
    self, k_points: ArrayLike, with_eigenvectors: bool = True
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Calculates the phonon frequencies and eigenvectors for the given k-points.

    Args:
        k_points (ArrayLike): Numpy array of k-points in fractional coordinates.
        with_eigenvectors (bool, optional): Flag indicating whether to calculate eigenvectors.

    Returns:
        A tuple containing the phonon frequencies and eigenvectors.

            * The phonon frequencies are represented as a numpy array of shape (n_k,n_modes)

            * The eigenvectors are represented as a numpy array of shape (n_k, n_atoms, n_modes, 3)

            where n_k is the number of k-points, n_modes is the number of modes,
            n_atoms is the number of atoms, and the last index is
            for the x, y, z components of the eigenvectors.
    """
    # run phonopy in mesh mode
    self.phonopy_file.run_qpoints(k_points, with_eigenvectors=with_eigenvectors)

    mesh_dict = self.phonopy_file.get_qpoints_dict()

    eigenvectors_pre = mesh_dict.get("eigenvectors", None)
    # print(eigenvectors_pre)
    # convert frequencies to correct units
    omega = const.THz_to_eV * mesh_dict["frequencies"]

    eigenvectors = np.zeros(
        (len(k_points), self.n_modes, self.n_atoms, 3), dtype=complex
    )
    # Need to reshape the eigenvectors from (n_k, n_modes, n_modes)
    # to (n_k, n_modes, n_atoms, 3) # TODO: is this correct?
    if with_eigenvectors:
        # TODO: Should rewrite this with a reshape...
        for q in range(len(k_points)):
            for nu in range(self.n_modes):
                eigenvectors[q, nu] = np.array_split(
                    eigenvectors_pre[q].T[nu], self.n_atoms
                )

    return omega, eigenvectors

get_W_tensor(grid)

Computes the W tensor for the given Monkhorst-Pack grid. The W tensor for atom \(j\) is given by: $$ \mathbf{W}j = \frac{\Omega}{4 m_j} \sum\nu \int_\text{1BZ} \frac{d^3k}{(2\pi)^3} \frac{\epsilon_{\nu j \bm{k}} \otimes \epsilon_{\nu j \bm{k}}^*}{\omega_{\nu \bm{k}}} $$

The Debye-Waller factor can be computed from the W tensor as: $$ W_j(\bm{q}) = \bm{q} \cdot (\mathbf{W}_j \bm{q}) $$

Parameters:

Name Type Description Default
grid MonkhorstPackGrid

The Monkhorst-Pack grid.

required

Returns:

Type Description
ndarray

np.ndarray: The W tensor.

Source code in darkmagic/material.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def get_W_tensor(self, grid: MonkhorstPackGrid) -> np.ndarray:
    r"""
    Computes the W tensor for the given Monkhorst-Pack grid. The W tensor for atom $j$ is given by:
    $$
    \mathbf{W}_j = \frac{\Omega}{4 m_j} \sum_\nu \int_\text{1BZ} \frac{d^3k}{(2\pi)^3} \frac{\epsilon_{\nu j \bm{k}} \otimes \epsilon_{\nu j \bm{k}}^*}{\omega_{\nu \bm{k}}}
    $$

    The Debye-Waller factor can be computed from the W tensor as:
    $$
    W_j(\bm{q}) = \bm{q} \cdot (\mathbf{W}_j \bm{q})
    $$

    Args:
        grid (MonkhorstPackGrid): The Monkhorst-Pack grid.

    Returns:
        np.ndarray: The W tensor.

    """
    omega, epsilon = self.get_eig(grid.k_frac)
    # epsilon is (n_k, n_modes, n_atoms, 3)
    eps_tensor = np.einsum("...i,...j->...ij", epsilon, np.conj(epsilon))

    # Sum over all modes and divide by the frequency
    W = (
        1
        / (4 * self.m_atoms[None, :, None, None])
        * np.sum(eps_tensor / omega[..., None, None, None], axis=1)
    )
    # Integrate over the BZ
    return np.sum(W * grid.weights[:, None, None, None], axis=0) / np.sum(
        grid.weights
    )

MagnonMaterial(name, properties, hamiltonian, m_cell, nodmi=False, noaniso=False)

Bases: Material

A class for materials with magnons

Attributes:

Name Type Description
hamiltonian SpinHamiltonian

The spin Hamiltonian of the material.

n_modes int

The number of magnon modes.

dispersion MagnonDispersion

The magnon dispersion.

In the current implementation, the hamiltonian only contains the magnetic atoms and their interactions. So m_cell needs to be specified separately

Parameters:

Name Type Description Default
name str

The name of the material.

required
properties MaterialParameters

The properties of the material.

required
hamiltonian SpinHamiltonian

The spin Hamiltonian

required
m_cell float

the total mass of all ions in the cell

required
nodmi bool

Whether to include DM interactions.

False
noaniso bool

Whether to include anisotropic exchange.

False
Source code in darkmagic/material.py
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def __init__(
    self,
    name: str,
    properties: MaterialParameters,
    hamiltonian: SpinHamiltonian,
    m_cell: float,
    nodmi: bool = False,
    noaniso: bool = False,
):
    """
    Constructor for a magnon material

    In the current implementation, the hamiltonian only
    contains the magnetic atoms and their interactions.
    So m_cell needs to be specified separately

    Args:
        name: The name of the material.
        properties: The properties of the material.
        hamiltonian: The spin Hamiltonian
        m_cell: the total mass of all ions in the cell
        nodmi: Whether to include DM interactions.
        noaniso: Whether to include anisotropic exchange.
    """
    # Ensure the hamiltonian is in the correct units
    # hamiltonian.cell *= const.Ang_to_inveV
    # In the future we should have a check that it comes in in units of A
    # And convert it here
    self.hamiltonian = hamiltonian
    n_atoms = len(hamiltonian.magnetic_atoms)
    self.n_modes = n_atoms
    self.dispersion = MagnonDispersion(
        hamiltonian, phase_convention="tanner", nodmi=nodmi, noaniso=noaniso
    )

    n_atoms = len(hamiltonian.magnetic_atoms)  # Number of magnetic atoms
    properties.validate_for_magnons(n_atoms)
    # Atom positions in cartesian coordinates (units of 1/eV)
    self.xj = np.array(
        [
            hamiltonian.get_atom_coordinates(atom, relative=False)
            for atom in hamiltonian.magnetic_atoms
        ]
    )
    # sqrt(Sj/2)
    # TODO: make this an internal variable
    self.sqrt_spins_2 = np.sqrt(
        np.array([atom.spin for atom in hamiltonian.magnetic_atoms]) / 2
    )
    # The vectors for rotating to local coordiante system
    # TODO: make this an internal variable
    self.rj = self.dispersion.u

    positions = np.array([a.position for a in hamiltonian.magnetic_atoms])
    lattice = hamiltonian.cell
    species = [a.type for a in hamiltonian.magnetic_atoms]
    structure = Structure(lattice, species, positions)

    m_atoms = [m_cell / n_atoms] * n_atoms
    super().__init__(name, properties, structure, m_atoms)

max_dE: float property

TODO: this needs improvement

Returns the maximum dE possible for the material. For magnons, we estimate this as roughly 3 times the highest magnon frequency at the Brillouin zone (BZ) boundary. If there are no gapped modes at the gamma point, the maximum dE will be 0.

Returns:

Name Type Description
float float

The maximum dE value.

Notes

This calculation should be an average over the Brillouin zone (BZ).

q_cut: float property

For magnons there is no q_cut, so we just set this to a very large number.

Returns:

Name Type Description
q_cut float

a very large number.

get_eig(k, G)

Calculate the eigenvalues and magnon polarization vectors for a given k-point and G-vector.

Parameters:

Name Type Description Default
k ArrayLike

Single k-point, cartesian coordinates (units of eV).

required
G ArrayLike

Single G-vector, cartesian coordinates (units of eV).

required

Returns:

Type Description
Tuple[ndarray, ndarray]

Tuple[np.ndarray, np.ndarray]: A tuple containing the eigenvalues (omega_nu_k) and eigenvectors (epsilon_nu_k_G). - omega_nu_k: (N,) an array of complex numbers representing the eigenvalues in eV. - epsilon_nu_k_G: (N,3) array of complex numbers representing the eigenvectors (magnon polarization vectors) in eV/?? N is the number of magnon modes.

Source code in darkmagic/material.py
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def get_eig(self, k: ArrayLike, G: ArrayLike) -> Tuple[np.ndarray, np.ndarray]:
    """
    Calculate the eigenvalues and magnon polarization vectors for a given k-point and G-vector.

    Args:
        k (ArrayLike): Single k-point, cartesian coordinates (units of eV).
        G (ArrayLike): Single G-vector, cartesian coordinates (units of eV).

    Returns:
        Tuple[np.ndarray, np.ndarray]: A tuple containing the eigenvalues (omega_nu_k) and eigenvectors (epsilon_nu_k_G).
            - omega_nu_k: (N,) an array of complex numbers representing the eigenvalues in eV.
            - epsilon_nu_k_G: (N,3) array of complex numbers representing the eigenvectors (magnon polarization vectors) in eV/??
            N is the number of magnon modes.

    """
    # Calculate the prefactor
    prefactor = self.sqrt_spins_2 * np.exp(1j * np.dot(self.xj, G))

    # See Tanner's Disseration and RadTools doc for explanation of the 1/2
    N = self.n_atoms
    omega_nu_k, Tk = self._get_omega_T(self.dispersion.h(k) / 2)
    Uk_conj = np.conjugate(Tk[:N, :N])  # This is U_{j,nu,k})*
    V_minusk = np.conjugate(Tk[N:, :N])  # This is ((V_{j,nu,-k})*)*

    epsilon_nu_k_G = (prefactor[:, None] * V_minusk).T @ np.conjugate(self.rj) + (
        prefactor[:, None] * Uk_conj
    ).T @ self.rj

    return omega_nu_k, epsilon_nu_k_G  # (n,) and (n,3) array of complex numbers